p-group, metabelian, nilpotent (class 4), monomial
Aliases: C24.36D4, C2≀C4⋊5C2, C24⋊3(C2×C4), C22≀C2⋊2C4, (C22×D4)⋊9C4, C23.4(C2×D4), (C2×D4).126D4, (C22×C4).91D4, (C2×D4).15C23, C23⋊3D4.7C2, C22.D4⋊2C4, C23.D4⋊5C2, C23⋊C4.8C22, C22≀C2.1C22, C22.8(C23⋊C4), C23.54(C22×C4), C4.D4.9C22, C23.84(C22⋊C4), (C22×D4).100C22, C22.D4.1C22, (C2×C4).4(C2×D4), C22⋊C4⋊3(C2×C4), (C2×C22⋊C4)⋊9C4, (C22×C4)⋊3(C2×C4), (C2×C23⋊C4)⋊12C2, C2.33(C2×C23⋊C4), (C2×D4).124(C2×C4), (C2×C4.D4)⋊27C2, (C2×C4).25(C22⋊C4), C22.57(C2×C22⋊C4), SmallGroup(128,853)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.36D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, eae-1=ad=da, af=fa, bc=cb, bd=db, ebe-1=bcd, bf=fb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=bde3 >
Subgroups: 412 in 140 conjugacy classes, 42 normal (34 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C23⋊C4, C23⋊C4, C4.D4, C4.D4, C2×C22⋊C4, C2×C22⋊C4, C22≀C2, C22≀C2, C4⋊D4, C22.D4, C22.D4, C2×M4(2), C22×D4, C2≀C4, C23.D4, C2×C23⋊C4, C2×C4.D4, C23⋊3D4, C24.36D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×C23⋊C4, C24.36D4
Character table of C24.36D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | i | -i | -1 | 1 | -i | i | -1 | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -i | i | -1 | 1 | i | -i | -1 | -i | -i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | i | i | -1 | -1 | -i | -i | 1 | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -i | -i | -1 | -1 | i | i | 1 | i | -i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -i | -i | 1 | 1 | i | i | -1 | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | i | i | 1 | 1 | -i | -i | -1 | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | i | 1 | -1 | i | -i | 1 | i | i | -i | -i | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -i | 1 | -1 | -i | i | 1 | -i | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 10)(2 15)(3 12)(4 9)(5 14)(6 11)(7 16)(8 13)
(1 16)(2 13)(3 14)(4 11)(5 12)(6 9)(7 10)(8 15)
(2 6)(4 8)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 8 16 15)(2 10 13 7)(3 6 14 9)(4 12 11 5)
G:=sub<Sym(16)| (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13), (1,16)(2,13)(3,14)(4,11)(5,12)(6,9)(7,10)(8,15), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8,16,15)(2,10,13,7)(3,6,14,9)(4,12,11,5)>;
G:=Group( (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13), (1,16)(2,13)(3,14)(4,11)(5,12)(6,9)(7,10)(8,15), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8,16,15)(2,10,13,7)(3,6,14,9)(4,12,11,5) );
G=PermutationGroup([[(1,10),(2,15),(3,12),(4,9),(5,14),(6,11),(7,16),(8,13)], [(1,16),(2,13),(3,14),(4,11),(5,12),(6,9),(7,10),(8,15)], [(2,6),(4,8),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,8,16,15),(2,10,13,7),(3,6,14,9),(4,12,11,5)]])
G:=TransitiveGroup(16,219);
(1 13)(2 10)(3 15)(4 12)(5 9)(6 14)(7 11)(8 16)
(1 13)(2 14)(3 11)(4 12)(5 9)(6 10)(7 15)(8 16)
(1 5)(3 7)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16 13 8)(2 7 14 15)(3 10 11 6)(4 5 12 9)
G:=sub<Sym(16)| (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16), (1,13)(2,14)(3,11)(4,12)(5,9)(6,10)(7,15)(8,16), (1,5)(3,7)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16,13,8)(2,7,14,15)(3,10,11,6)(4,5,12,9)>;
G:=Group( (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16), (1,13)(2,14)(3,11)(4,12)(5,9)(6,10)(7,15)(8,16), (1,5)(3,7)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16,13,8)(2,7,14,15)(3,10,11,6)(4,5,12,9) );
G=PermutationGroup([[(1,13),(2,10),(3,15),(4,12),(5,9),(6,14),(7,11),(8,16)], [(1,13),(2,14),(3,11),(4,12),(5,9),(6,10),(7,15),(8,16)], [(1,5),(3,7),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16,13,8),(2,7,14,15),(3,10,11,6),(4,5,12,9)]])
G:=TransitiveGroup(16,236);
(2 6)(4 8)(9 13)(11 15)
(1 7)(2 4)(3 5)(6 8)(9 15)(10 12)(11 13)(14 16)
(2 6)(4 8)(10 14)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 14 7 16)(2 11 4 13)(3 12 5 10)(6 15 8 9)
G:=sub<Sym(16)| (2,6)(4,8)(9,13)(11,15), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14,7,16)(2,11,4,13)(3,12,5,10)(6,15,8,9)>;
G:=Group( (2,6)(4,8)(9,13)(11,15), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14,7,16)(2,11,4,13)(3,12,5,10)(6,15,8,9) );
G=PermutationGroup([[(2,6),(4,8),(9,13),(11,15)], [(1,7),(2,4),(3,5),(6,8),(9,15),(10,12),(11,13),(14,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,14,7,16),(2,11,4,13),(3,12,5,10),(6,15,8,9)]])
G:=TransitiveGroup(16,266);
(1 10)(2 15)(3 12)(4 9)(5 14)(6 11)(7 16)(8 13)
(2 6)(3 7)(11 15)(12 16)
(2 6)(4 8)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 8)(2 3 6 7)(4 5)(9 14)(10 13)(11 16 15 12)
G:=sub<Sym(16)| (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13), (2,6)(3,7)(11,15)(12,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8)(2,3,6,7)(4,5)(9,14)(10,13)(11,16,15,12)>;
G:=Group( (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13), (2,6)(3,7)(11,15)(12,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8)(2,3,6,7)(4,5)(9,14)(10,13)(11,16,15,12) );
G=PermutationGroup([[(1,10),(2,15),(3,12),(4,9),(5,14),(6,11),(7,16),(8,13)], [(2,6),(3,7),(11,15),(12,16)], [(2,6),(4,8),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,8),(2,3,6,7),(4,5),(9,14),(10,13),(11,16,15,12)]])
G:=TransitiveGroup(16,287);
(1 15)(2 12)(3 9)(4 14)(5 11)(6 16)(7 13)(8 10)
(1 7)(2 4)(3 5)(6 8)(9 11)(10 16)(12 14)(13 15)
(2 6)(4 8)(10 14)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 6 7 8)(2 3 4 5)(9 14 11 12)(10 15 16 13)
G:=sub<Sym(16)| (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,6,7,8)(2,3,4,5)(9,14,11,12)(10,15,16,13)>;
G:=Group( (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,6,7,8)(2,3,4,5)(9,14,11,12)(10,15,16,13) );
G=PermutationGroup([[(1,15),(2,12),(3,9),(4,14),(5,11),(6,16),(7,13),(8,10)], [(1,7),(2,4),(3,5),(6,8),(9,11),(10,16),(12,14),(13,15)], [(2,6),(4,8),(10,14),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,6,7,8),(2,3,4,5),(9,14,11,12),(10,15,16,13)]])
G:=TransitiveGroup(16,317);
(2 6)(4 8)(9 13)(11 15)
(2 9)(3 7)(4 15)(6 13)(8 11)(10 14)
(1 12)(2 9)(3 14)(4 11)(5 16)(6 13)(7 10)(8 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 11 9 8)(3 14 7 10)(4 6 15 13)(12 16)
G:=sub<Sym(16)| (2,6)(4,8)(9,13)(11,15), (2,9)(3,7)(4,15)(6,13)(8,11)(10,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,11,9,8)(3,14,7,10)(4,6,15,13)(12,16)>;
G:=Group( (2,6)(4,8)(9,13)(11,15), (2,9)(3,7)(4,15)(6,13)(8,11)(10,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,11,9,8)(3,14,7,10)(4,6,15,13)(12,16) );
G=PermutationGroup([[(2,6),(4,8),(9,13),(11,15)], [(2,9),(3,7),(4,15),(6,13),(8,11),(10,14)], [(1,12),(2,9),(3,14),(4,11),(5,16),(6,13),(7,10),(8,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,11,9,8),(3,14,7,10),(4,6,15,13),(12,16)]])
G:=TransitiveGroup(16,319);
(2 6)(4 8)(10 14)(12 16)
(2 6)(3 7)(11 15)(12 16)
(2 6)(4 8)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 13)(2 16 6 12)(3 11 7 15)(4 10)(5 9)(8 14)
G:=sub<Sym(16)| (2,6)(4,8)(10,14)(12,16), (2,6)(3,7)(11,15)(12,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16,6,12)(3,11,7,15)(4,10)(5,9)(8,14)>;
G:=Group( (2,6)(4,8)(10,14)(12,16), (2,6)(3,7)(11,15)(12,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16,6,12)(3,11,7,15)(4,10)(5,9)(8,14) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16)], [(2,6),(3,7),(11,15),(12,16)], [(2,6),(4,8),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,13),(2,16,6,12),(3,11,7,15),(4,10),(5,9),(8,14)]])
G:=TransitiveGroup(16,324);
Matrix representation of C24.36D4 ►in GL8(ℤ)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,Integers())| [0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0] >;
C24.36D4 in GAP, Magma, Sage, TeX
C_2^4._{36}D_4
% in TeX
G:=Group("C2^4.36D4");
// GroupNames label
G:=SmallGroup(128,853);
// by ID
G=gap.SmallGroup(128,853);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,723,1123,851,375,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations
Export